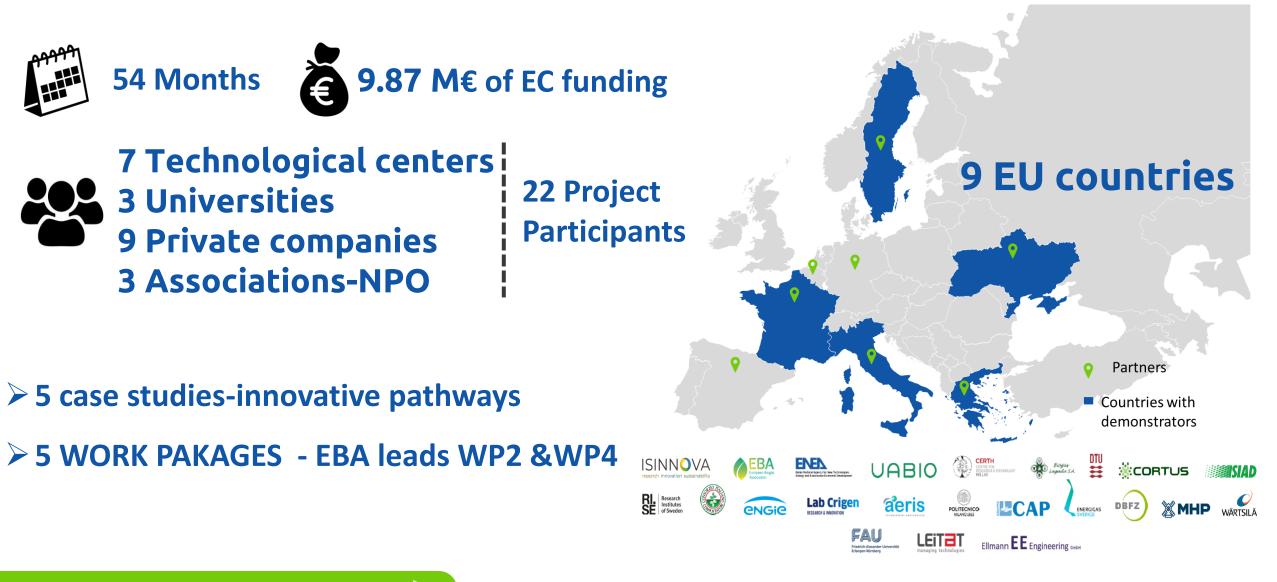


Innovative biomethane pathways: The BIOMETHAVERSE Project

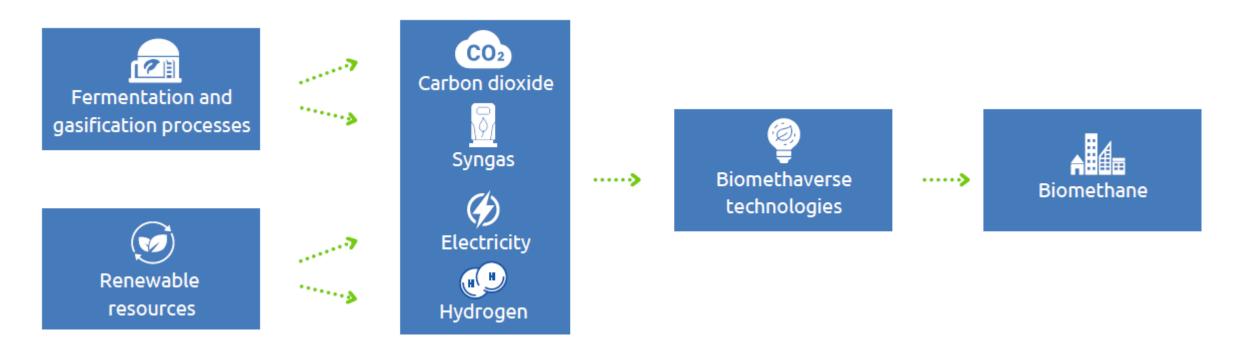
Gabriella Papa, Technical and Project Officer


ETIP Bioenergy Stakeholder Plenary Meeting, Brussel 28/09/23

Co-funded by the European Union

Demonstrating and Connecting Innovations in the BIOMETHAne uniVERSE

Goals – Objectives



CO₂ effluents from AD or syngas in synergy w/ H₂ or EE → increase bioCH4 yields & address circular system

Innovative technological concepts in BIOMETHAVERSE

GOAL : establish a scalable and economically viable process to convert biogas, syngas, EE, CO₂, H₂ to bioCH₄ to be used for power, heat, transport

16 Tasks WORK PACKAGES Breakdown structure 29 deliverables

WP1 Coordination & Management

ENEN

WP3 Assessment & Optimization of Innovative bioCH4 pathways

- Evaluation framework and **data collection** strategy
- Demos flow sheeting and TEA
- Environmental and social sustainability
- **Evaluation** results and upscaling of demos 0

WP2 Demonstration

of Innovative bioCH4

pathways

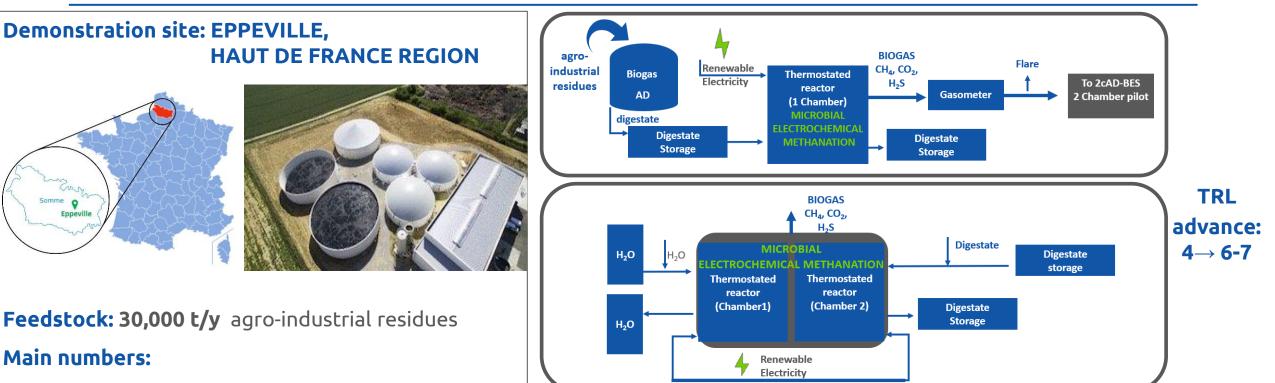
WP4 Replicability, Planning Decision, Market POLICY **Penetration Policy dimension**

- **Replicability** analysis
- Assisting future planning decisions • Market uptake **Policy recomendations**

ISINNOVA

03

5 Innovative bioCH₄ Pathways


- FR In-Situ & Ex-Situ Electromethanogenesis
- EL Ex-Situ Thermochemical/catalytic Methanation
- IT Ex-Situ Biological Methanation
- SE Ex-Situ Syngas Biological Methanation
- UA In-Situ Biological Methanation

FEEDSTOCKS- WASTE BASED

Agro-industrial residues Livestock Waste WWTP sewage sludge Wood Chips, Logging Residues, Municipal Yard Trimming Chicken manure & agricultural residues

In-Situ and Ex-Situ Electro-methanogenesis (EMG) in France

- 1,815,000 m³/y bioCH₄
- 250 Nm³/h injected into NG grid
- **6,000 m³** digestion volume (HRT> 50 d)
- Valorization of digestate-land

spreading (**6,000 ha**, **31** farms).

Technology: bioCH₄ from bioelectrochemical methanation

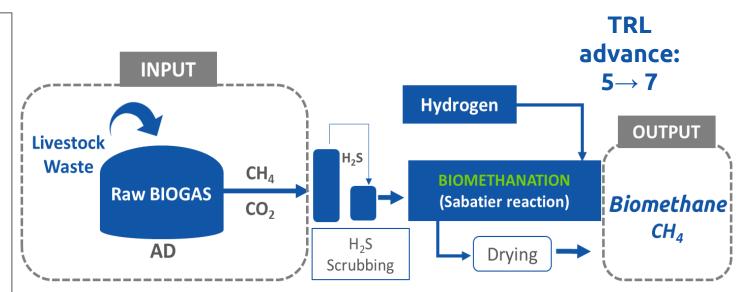
- 1c-AD-BES: biogas with a bioCH₄ content up to 70-80%
- **2c-AD-BES:** biogas upgrading to bioCH₄ (>95%) and P2G applications (bio-electrocatalytically), converting the biogas CO₂ share

Input : CO₂ +electricity + H₂ 0

Output: + 91% of biogas, 98% bioCH₄, 0.8 m³/day

Ex-Situ Thermochemical/catalytic Methanation (ETM) in Greece

Demonstration site: KOLCHIKO-LAGADAS, CENTRAL MACEDONIA REGION



Feedstock: 80,000 t/y of livestock waste

Main numbers:

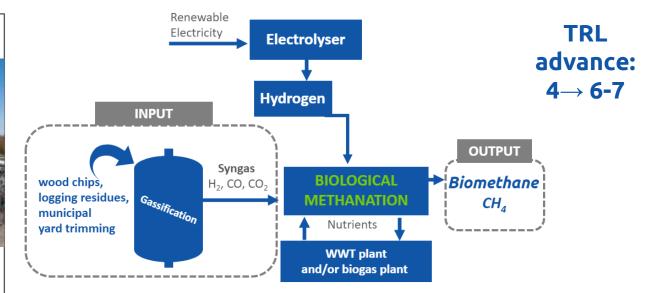
- 8,400 MWh electricity + 75,000 t digestate
- 290 Nm³/h capacity 1 MW CHP
- 2 fermenters of 4,500 m³ each
- Land-spreading valorizations (**5,000 acres**).

Technology: Conversion of CO_2 in the biogas to bio CH_4 , through its reaction with renewable H_2 in a catalytic reactor **Input: 6 Nm³ /h** biogas

Output: 15,000 Nm³ of bioCH₄, @ **96-98 vol%**, energy efficiency **61%**

Ex-Situ Syngas Biological Methanation (ESB) in Sweden

Demonstration site: HÖGANÄS, GÖTALAND REGION



Feedstock: wood chips, logging residues, municipal yard trimming

Main numbers:

- 6 MW gasification plant owned
- Syngas H₂ (55%) CO (30%) CO₂ (14%) CH₄ (1%)

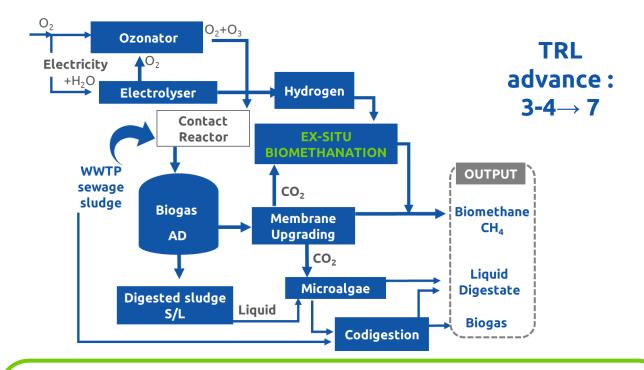
Technology: Demo plant is containerized and fully mobile. Biological methanation of syngas (CO and H₂) and nutrient solution (i.e., digestate or from H₂O after S/L of WWT sludge) with or w/o external electrolyser that provides additional H_2 from RE.

Input : 10 kW syngas (+H₂)

Output: 16 kW bioCH₄

Ex-Situ Biological Methanation (EBM) in Italy

Demonstration site: BRESSO-NIGUARDA, LOMBARDY REGION



Feedstock: Urban WWTP with 2 parallel AD lines for sewage sludge valorization to biogas

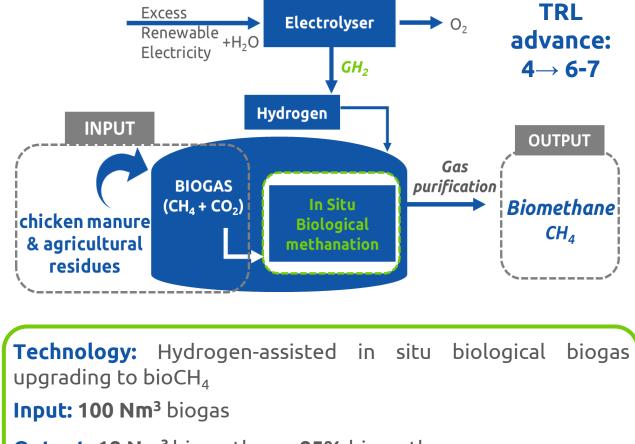
Main numbers:

90 m³/h or 600,000 m³/y bioCH₄ injected into grid

Technology: Feedstock pre-treatment via ozonolysis, Pilot-scale Ex-situ biological upgrading (EBM), Pilot-scale microalgae operation, Pilot-scale co-digestion operation

Input : $CO_2 + H_2$

Output: 160 L/h biomethane, increase of **78%** of biomethane production


In-Situ Biological Methanation (IBM) in Ukraine

Feedstock: 300 t/d chicken manure and agricultural residues

Main numbers:

- **85 GW** electricity + **75,000 t** of digestate
- 12 MW capacity
- **12** reactors (9 main fermenters , 3 post-digestors)
- 90,000 m³ each

Output: 18 Nm³ biomethane, 85% biomethane

EUROPEAN BIOMETHANE WEEK

EUROPEAN BIOGAS CONFERENCE 24 - 25 OCTOBER 2023

COUNTDOWN TO 2030 FROM TARGETS TO ACTION! 23-27 October 2023: across Europe

TICKETS AVAILABLE www.europeanbiogas.eu

With the support of

European Commission BIP Europe

Scan QR code

#Biomethaverse

Thank you!

Follow Biomethaverse:

www.biomethaverse.eu @European_Biogas @European Biogas Association

Coordinator: Stefano Proietti, ISINNOVA Email: sproietti@isinnova.org

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

