BIOHUBS for social impact

S. van der Veen^a, S. Chandrasekaran^a, L. Asveld^a, J.A. Posada^a, W. de Jong^b, L. Cutz^b, **P. Osseweijer**^a

^aBiotechnology and Society section, Department of Biotechnology, ^bLarge scale Energy Storage, Department Process & Energy Delft University of Technology

Perceptions: Biofuels causing hunger?

How do we know what are **better solutions**?

major assumptions

- There is not enough land available
- Food prices related to biofuel production
- Biofuels do not contribute to less GHG emissions
- The 'cleanest' production technology is the best solution

food and energy insecurities still affect nearly one billion people
75 % live in rural areas, where fertile land is available
Coincides with unsustainable traditional use of biomass

Majority available land in areas where technology can improve sustainable practices

rce: IEA databases.

Delft

Food *in*security is directly related to poverty

• One out of two children live in poverty -> growing population

Eradication of **poverty is key for sustainability**

This requires science, technology, investment and equal distribution

Sustainable bioenergy production can stimulate rural development; provide employment, infrastructure, energy security and social development

Bioenergy & Sustainability

Inaction is not an option

SCOPE

Going on as we do will Deteriorate our environment Increase north-south divide Increase natural disasters Increase Food *in*security

People with this viewpoint are enthused, happy and optimistic about the production of bio-energy, fuels and –plastics.

UDelft

They are concerned, frustrated and angry about the idea that humanity will go bio-based at all costs.

Lorentz

center

AND: technology alone is not enough.....

- A sustainable world depends on social development
- The precautionary principle is not always a valid nor an ethical choice
- We need better communication to avoid misperceptions
- We need new governance, policies and business models that stimulate integral sustainable agriculture for food and energy

Trends...

- Growing world population
- Growing consumerism
- Youth peak 1,8 B people under 18 in SSA
- 15 M entering workforce every year 33.000/day!
- Less developed countries: 80% unemployed

"Sometimes you need to look at Life from a different perspective."

I. What is 'good'? – moral aspects Scientific uncertainty, trust, value, scientifi

>2. How do we get there? – perspectives for action

- What do we need? Technology, infrastructure
- Who needs to do what? Incentives, support

>3. How to make choices? – political arena

•Scientific uncertainty, trust, values, just distribution, perceptions, interests

▶2. How do we get there? – perspectives for action

•What do we need? Technology, infrastructure

•Who needs to do what? Incentives, support

>3. How to make choices? – political arena

Cost economy to value economy

Problem is

- Energy security
- Climate change
- Food security
- Sustainable environment
- Urbanisation
- Social development
- Health
- Well being
-

Need a different, circular business model

ŤUDelft

Need for multidisciplinary approach

- Not only focus on what and how, but also on the underlying moral values
 - Just distribution
 - Trust
 - Sustainability

This requires integration of - social science and technology

* Figure from Report MVI project *Deugden in de Energie transitie 2018,* Tertium en VU

Delft

How to implement?

- Transitioning to the Circular BioEconomy entails more than solely technical matters
 - Inclusive Value chains
 - Responsible Research Innovation
 - Sustainability Assessment
 - Techno-economic Assessment
 - Stakeholder Engagement

0

Oosterlaken /

' Sites

for

Scholars

invasive

species

CLEANSHIPPING project

How to design an inclusive and sustainable marine biofuel value chain?

https://www.cleanshipping.nl/

Bush encroachment

- Excessive spreading of indigenous woody plants in savannah ecosystems
- Mainly: Acacia mellifera
- Estimated 45 million hectares affected

Negative impacts

- Changing biodiversity & soil
- Poor groundwater replenishment
- Decreased agricultural productivity/grazing capacity
- Economic losses
- Reduction in rangelands

Current utilization

45 million hectares

Annual bush growth has reached **3.4% per year**.

Approx. 14 million tonnes annual woody biomass re-growth

> nearly 412 million tonnes of harvestable woody biomass is available

Source: BIP Brochure, 2020

Current utilisation is **NEGLIGIBLE**

Around 1.85 million tonnes approx. 1% of the total available biomass

Current utilisation status;

Some bush biomass is still chemically treated or burned infield

Charcoal production has potential for enhancement

Bush biomass offers diverse opportunities for rural income and employment

Case study - Interviews

Stakeholder group	Type of stakeholder	Nr.
Workers	Bush workers	8
	Farm workers	2
Value chain actors	Farmers	6
	Farmers unions	3
	Biomass processors	3
	Transport companies	1
	Conservancies	3
Local community	Communal farmers/leaders	6
Society	Government	4
	Civil society	2
	Investors	2
T UDelft		

Multi-stakeholder workshop

Context

- Total population: 2,5 million
- +/- 70% dependent on agriculture for livelihood
- High unemployment: 21,27%
- 43.3% lives in poverty
- Electricity access: 56% of population (less than 10% of rural households)
- High inequality (Gini coefficient of 59,1)

Okalonor Context – land ownership Ombalante Uukwanyama Uukolonkadhi Jukwambi Mhunze Ondonga Ongandiers Mbukushu **IGaiodaman** Commercial farms Swartbooi HAndame Kambazembi Gobanin Dâure //Oe#G Mbanderu Communal farms Batswana Tsoaxudaman Khomani A Toonaa **Resettlement farms** E Bakgalagadi ▲Kai-#Kaun Caprivi Witbooi Simon Kooper Damara lerero \rightarrow Different needs and capacities Kavango Vaalora Nama Owambo Soromaas A Blouwer Afrikaner San swana Communal land **T**UDelft Bondelswart

SWOT analysis

Biohub scenario

Outcome: A Roadmap for a Sustainable and Inclusive future

- Experience on small to medium scale
- No (bio)refinery
- No policy on biofuels
- Management plan + harvesting permit policy in place
- Basic infrastructure in place
- No local market
- No investors
- No sustainability goals for existing industries

- Biomass supply model
- Proof of concept whole value chain
- Technology + skills development
- Processing + harvesting equipment (cost efficient)

+5

- Test feedstock characteristics (mix of species)
- Market + product research
- Trials (small pilots)
- Create political will
- Policies enabling anchor product

production on 1 location (Otjiwarongo)

+10

- Pilot investigates more details (e.g. by-product valorization)
- Expand policies to other products simila to anchor product

+20

- Mix of problematic species
- Inclusive: everybody opportunity to supply biomass
- Combi of long term + flexible contracts
- Combi of central hub+ mobile chipping units
- Harvest, chipping, transport: SME's/associations
- Biofuel = key anchor
- Process + production in Namibia (maximum value addition)
- Policy alignment between relevant ministries
- Impact: rangeland restoration, job creation

Conclusion

Lot of potential

- Design needs to respond to different needs of different biomass suppliers
- Risks: working conditions, fair salary, wealth distribution, sustainable harvesting

Spain

- Many conditions needed for biohub already present
- Goal: Increased income for farmers, preservation of traditional system, improved sustainability
- Design: Close to current situation
- Choice of feedstock: COP

Colombia

- More complex: many conditions not yet present (infrastructure, technology, knowledge, awareness)
- Goal: diversifying income, improve resource management, increase opportunities for youth
- Design: smaller hubs, multiple residues, flexible supply methods, shipping fuels most suitable end product?
- Also: investments needed in institutional development, knowledge transfer, and farmers organizations

Stakeholder interviews

Workshop

Forecasting - Backcasting

SWOT insights

Decision making

- >887.000 ha (~5 billion trees)
- Production: 846.000 tn/y
- 96% family farms (< 5 ha)
- Farm holder range: <1 ~ 100 ha
- Traditional practices
- Altitude: between 900 and 2100 meters
- Institutions: • Fedecafe
 - Fedecafe \rightarrow Cooperatives
 - Associations

Lessons

- Differences in context: motivations, resources, knowledge, infrastructure: Never assume
- Adapt technical design + invest in necessary conditions such as infrastructure, machinery development, but also institutional development and knowledge transfer: Co-create
- Strengthening farmers organizations especially necessary when working with smaller scale farmers: Build resilience
- Contexts where these institutions are lacking: more risky, but also more impact: think out of the box
- Link to international policy maximise in scope 4
- Communicate together!

In public debates:

What is good?

- Moral concepts
- Cultural differences
 - Public emotions

- Implement Systems approach
- Not only focus on what and how, but address underlying moral values
 - Just distribution
 - Trust
 - Sustainability
- Use Co-creation using VSD, SSbD, RRI for Inclusive Design
- Large scale is not always best!

From social licence to shared responsibility

Design for sustainable futures

Design to meet the needs of the present without compromising the ability of future generations to meet their own needs (Brundlandt, 1987)

Sustainable design is also design for global justice

Thank you all

p.osseweijer@tudelft.nl

We work with data safety through Quodari:

Acknowledgments

This research was done within the CLEANSHIPPING project. It received funding from the Dutch Research Council (NWO) and different project partners.

Project website: https://www.cleanshipping.nl/

Backup slides and references

https://www.cleanshipping.nl/

Water Mining: https://www.youtube.com/channel/UCG_e05zxRk_oTInfHKaNDuA

https://www.watermining.eu

https://bioenfapesp.org/scopebioenergy/

https://sdgs.un.org/partnerships/

circular-wastewater-treatment-extracting-biopolymers-wastewater-sludge-campinas-brai

ACTION for development

- Combine local stakeholder involvement with technological innovation
- Design (circular) value chains & new business models
- Focus on durable agricultural development
- And learning for further local innovation and linked social development

