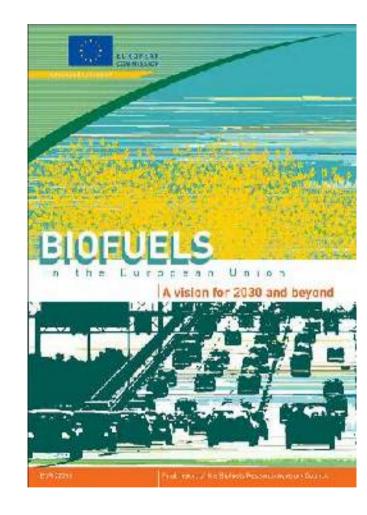


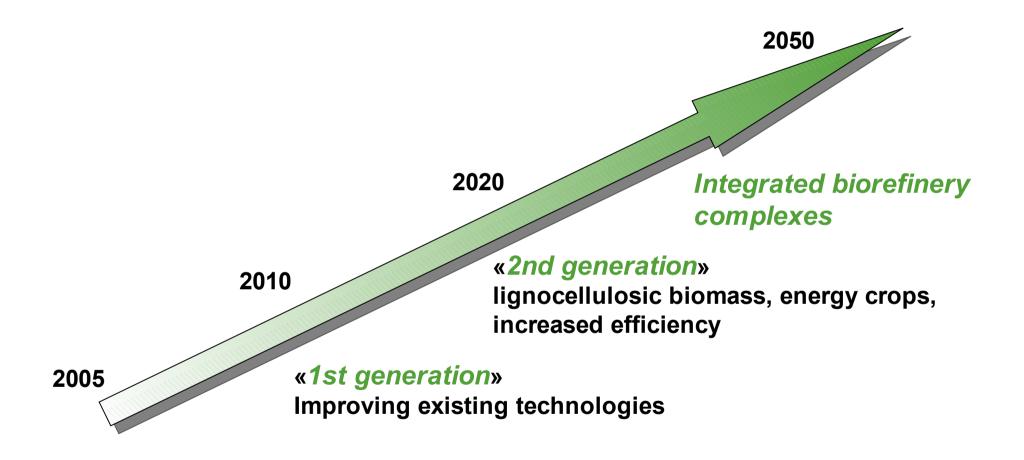
The European Biofuels Technology Platform:

Strategic Research Agenda & Strategy Deployment

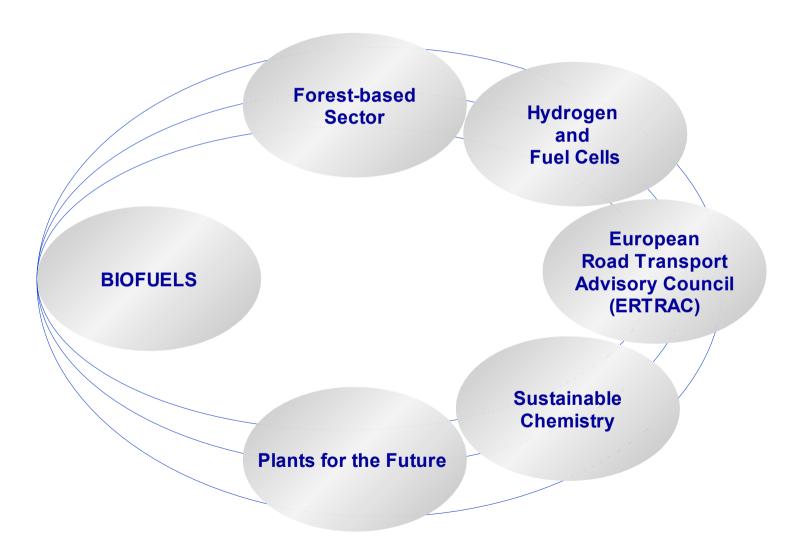

Luis Cabra

Corporate Director, Technology & Engineering, Repsol YPF Chairman, Steering Committee, Biofuels TP

The driving Vision



- By 2030, the European Union covers *one fourth of its road transport fuel needs* by clean and CO₂-efficient biofuels.
- A substantial part is provided by a competitive European industry. This significantly decreases the EU fossil fuel import dependence.
- Biofuels are produced using sustainable and innovative technologies; these create opportunities for biomass providers, biofuel producers and the automotive industry.


Vision report: Outline of technology roadmap

Interaction with other Technology Platforms

Strategic Research Agenda and Deployment Strategy

Main conclusions

Overview

 Three main areas of technology development are critical to ensure successful development of biofuels in the EU:

Feedstock:

- ✓ managing competition for land resources (food&fodder vs bioenergy) and for different biomass applications (transportation fuels, heat, power, industrial raw materials)
- ✓ Increasing yield per hectare and developing efficient supply logistics both for dedicated crops and residues

Conversion technologies:

√ developing energy efficient and reliable biomass-to-fuel conversion processes with feedstock flexibility and high quality product

End-use technologies:

- ✓ optimisation of fuel-engine environmental and energetic performance ensuring compatibility with existing and future infrastructure and vehicles
- The winning options (combination of land, feedstock, conversion and end product) will be those best addressing strategic and sustainability targets:
 - high level of GHG reduction with sound management of other key environmental issues (biodiversity, water use, local emissions ...)
 - security and diversification of energy supply for road transport

Feedstocks:

- ✓ Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- ✓ Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel production
- ✓ Develop efficient biomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- ✓ Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies

Feedstocks:

- ✓ Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- ✓ Develop new high-yield agricultural and forest systems with bresding of crops and trees optimised for biofuel production
- ✓ Develop efficient biomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales
- Conversion processes:
 - ✓ Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
 - ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
 - ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts

Feedstocks:

✓ Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)

✓ Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel production

✓ Develop efficient biomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies

• Feedstocks:

- ✓ Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- ✓ Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel production
- ✓ Develop efficient biomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- ✓ Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for Sigher GHS reduction, รักษณะสรอส flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies.

Feedstocks:

Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies) Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel product on

Develop efficient biomass logistic systems (harvesting/collection/storage) for different

conversion concepts at different scales

- ✓Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies

Feedstocks

- ✓ Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- ✓ Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for bic fuel proชื่อเรื่อก
- ✓ Develop efficient biomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies

Feedstocks:

- Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel production
- ✓ Develop efficient bichass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological convers on processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethanol)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts

Feedstocks:

- Develop availability-cost curves for different sources of biomass (energy crops, forestry and agriculture residues, wastes) and geographical locations; develop interfacing systems analysis (supply-demand, market interdependencies, impact of policies)
- ✓ Develop new high-yield agricultural and forest systems with breeding of crops and trees optimised for biofuel production
- ✓ Develop efficient blomass logistic systems (harvesting/collection/storage) for different conversion concepts at different scales

- Improve current conversion processes to their full potential (biodiesel, bioethanol from starch-sugar) for higher GHG reduction, increased flexibility for different raw materials and lower cost
- ✓ Develop thermochemical and biological conversion processes with feedstock flexibility for different lignocellulosic biomass (BtL, L-C bioethano)
- ✓ Develop integrated biorefinery concepts making full use of a variety of biomass feedstocks to obtain diverse high-value bioproducts
- ✓ Demonstrate at pilot and industrial scale reliability and performance of new technologies

Fuel/engine optimisation:

- ✓ Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs
- ✓ Generate engine-fleet test data and set sound quality standards for biofuels.
- ✓ Develop in-depth understanding of relationship between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.

✓ Overall system sustainability:

- ✓ Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental, social.
- ✓ Generate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

Fuel/engine optimisation:

✓ Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs

- ✓ Generate engine-fleet test data and set sound quality standards for biofuels
 ✓ Develop in depth understanding of relationship between highest quality and engin
- ✓ Develop in-depth understanding of relationship between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.

Overall system sustainability:

- ✓ Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental, social.
- ✓ Generate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

Fuel/engine optimisation:

 Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs

✓ Generate engine-fleet test data and set sound quality standards for biofuels

✓ Develop in-depth understanding of relations ip between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.

Overall system sustainability:

- ✓ Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental, social.
- ✓ Generate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

Fuel/engine optimisation:

- Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs
- ✓ Generate engine-fleet test data and set sound quality standards for biofuels
- ✓ Develop in-depth understanding of relationship between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.
- ✓ Overall system sustainability:
- Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental social.
- Senerate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

Fuel/engine optimisation:

- Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs
- ✓ Generate engine 4/lest test data and set sound quality standards for biofuels.
- ✓ Develop in-depth understanding of relationship between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.

✓ Overall system sustainability:

- ✓ Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental, social.
- Generate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

Fuel/engine optimisation:

- Establish conditions for compatibility of biofuels and biofuel blends with existing logistics, as well as existing and new powertrains; develop vehicle modifications for neat biofuels and high blends for specific market needs
- ✓ Generate engine-fieet test data and set sound quality standards for bictuels.
- ✓ Develop in-depth understanding of relationship between biofuel quality and engine performance for future fuel/powertrain systems in order to deliver superior combined performance.

✓ Overall system sustainability:

- ✓ Further develop indicators and coherent methodology to assess and monitor the three dimensions of sustainability: economic, environmental, social.
- ✓ Generate and collect data required and carry out sustainability assessment of existing and potential promising production chains (land, feedstock, process, fuel use).

 A coherent, long term and harmonised political and open market framework to secure confidence of investors in capital-intensive innovative technologies

- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and social sustainability of biofuel production chains.
- Social awareness needs to be increased and social acceptance gained by open communication of benefits as well as potential drawbacks of biofuels

- A coherent, long term and harmonised political and open market framework to secure confidence of investors in capital-intensive innovative technologies
- Joint public/private financing for R&D and Demonstration of new biofuel production routes and end-use applications. Additional public funding for higher risk large-scale demonstration facilities
- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and social sustainability of biofuel production chains.
- Social awareness needs to be increased and social acceptance gained by oper communication of benefits as well as potential drawbacks of biofuels

- A coherent, long term and harmonised political and open market framework to secure confidence of investors in capital-intensive innovative technologies
- Joint public/private financing for R&D and Demonstration of new biofuel production routes and end-use applications. Additional public funding for higher risk large-scale demonstration facilities
- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and soc al sustainability of biofuel production chains.
- Social awareness needs to be increased and social acceptance gained by open communication of benefits as well as potential drawbacks of biofuels

- A coherent, long term and harmonised political and open market framework to secure confidence of investors in capital-intensive innovative technologies
- Joint public/private financing for R&D and Demonstration of new biofuel production routes and end-use applications. Additional public funding for higher risk large-scale demonstration facilities
- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and social sustainability of biofuel production chains.
- Social awareness needs to be increased and social acceptance gained by open communication of benefits as well as potential drawbacks of biofuels

•

- A coherent, long term and harmonised political and open market framework to secure
 confidence of investors in capital intensive innovative technologies
- Joint public/private financing for R&D and Demonstration of new biofuel production routes and end-use applications. Additional public funding for higher risk large-scale demonstration facilities
- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and social sustainability of biofuel production chains.
- Social awareness needs to be increased and social acceptance gained by open communication of benefits as well as potential drawbacks of biofuels

- A coherent, long term and harmonised political and open market framework to secure confidence of investors in capital-intensive innovative technologies
- Joint public/private financing for R&D and Demonstration of new biofuel production routes and end-use ສຸກຸກໄດ້ເຄີເດລະ. Additional public funding for higher risk large-scale demonstration facilities
- Biofuel quality standards which are based on sound science while not creating unnecessary barriers for biofuel deployment
- A simple, coherent and global certification system to assure environmental, economic and social sustainability of biofuel production chairs.
- Social awareness needs to be increased and social acceptance gained by open communication of benefits as well as potential drawbacks of biofuels

European Biofuels Technology Platform

Contact us

Secretariat: <u>secretariat@biofuelstp.eu</u>

Web page: www.biofuelstp.eu