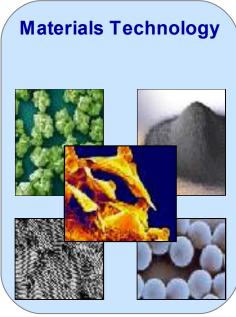
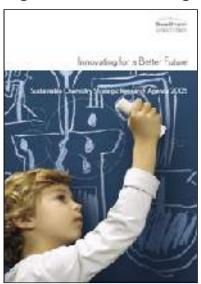
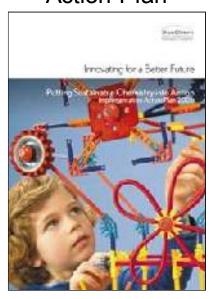
Biofuels and Sustainable Chemistry Just Meeting in Biorefineries or More Synergies?



Structure of SusChem ETP



March 2005


Strategic Research Agenda

November 2005

For more information: www.suschem.org

Implementation Action Plan

December 2006

More sustainable, more efficient and cheaper liquid biofuels production

HR	Distribution	Amount	Туре	IAP-related	Activities			
Improved biomass lermentation to liquid fuels								
	•			Bioeconomy				
Â	•			Bioeconomy	## P			
À	•			Bioeconomy	- Historias			
À	•			Bioeconomy				
2	Bioethanol		\$	Transport Bioeconomy				
			Proved biomass fermentation to liquid fue	Proved biomass fermentation to liquid fuels A D D D D D D D D D D D D D D D D D D	Bloeconomy Bioeconomy Bioeconomy Bioeconomy Transport			

Biorefinery concept IAP-related Action and timeline HR Distribution Туре Activities Amount Strategies for sustainability and competitiveness SPPD Define criteria for surtemability along the value chain. Energy Newbusiness made stor biorefinenes linked with rural development. Improvement of biorelining technologies Energy improved companent separation (with low energy input) Transport Define criter a for sustainability along the value chair. Energy Transport Integrate biorefinery concept and products (building blocks) into existing chemical industry SPPD Energy

"Knowledge based bio-economy"

→ DG Research, Directorate E "Food, Agriculture and Biotechnology"

"Renewable fuel production"

→ DG Research, Directorate J "Energy"

Partners ERA-IB

NWO - The Netherlands

BMBF / PTJ - Germany

MEC / FECyT - Spain

SCO-MOH / MOST - Israel

ADEME -France

DTI - UK

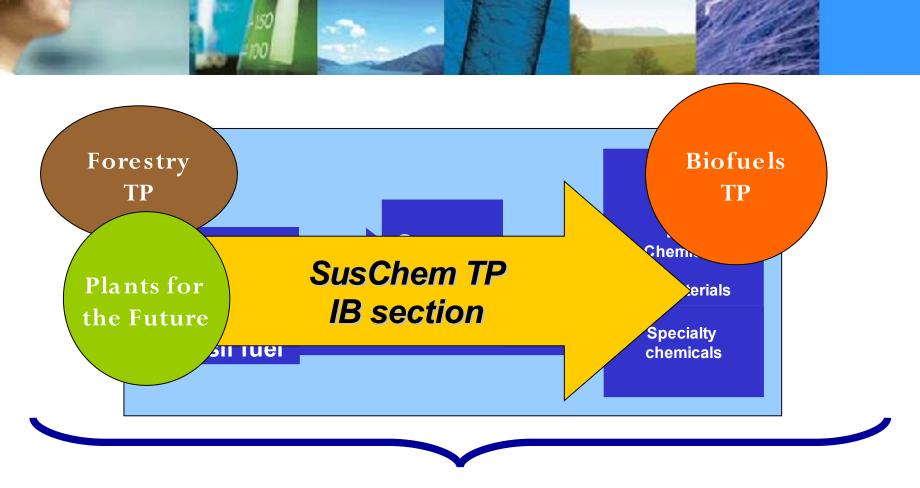
CNMP - Romania

MES / TUL - Poland

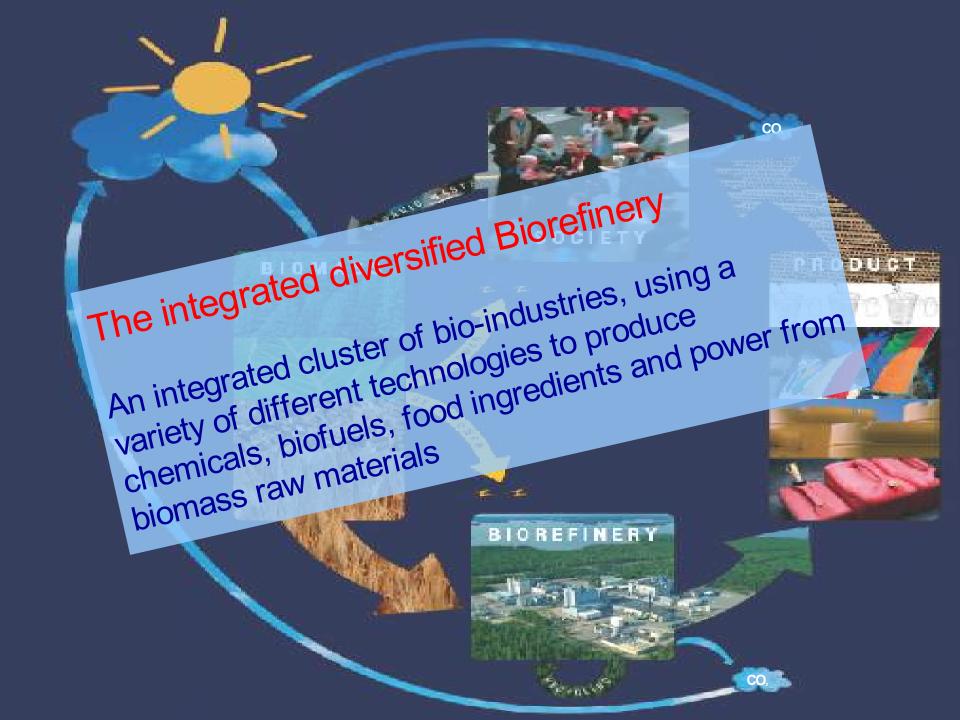
FCT - Portugal

DRA - Denmark

MSES - Croatia



BelSPO - Belgium


Observers: Slovenia, Norway, Finland, Sweden

Alignment with other ETPs: KBBE-ETP network

- « Integrated Biorefinery » concept (research, pilot plants, demonstration projects,

Beyond bioethanol......

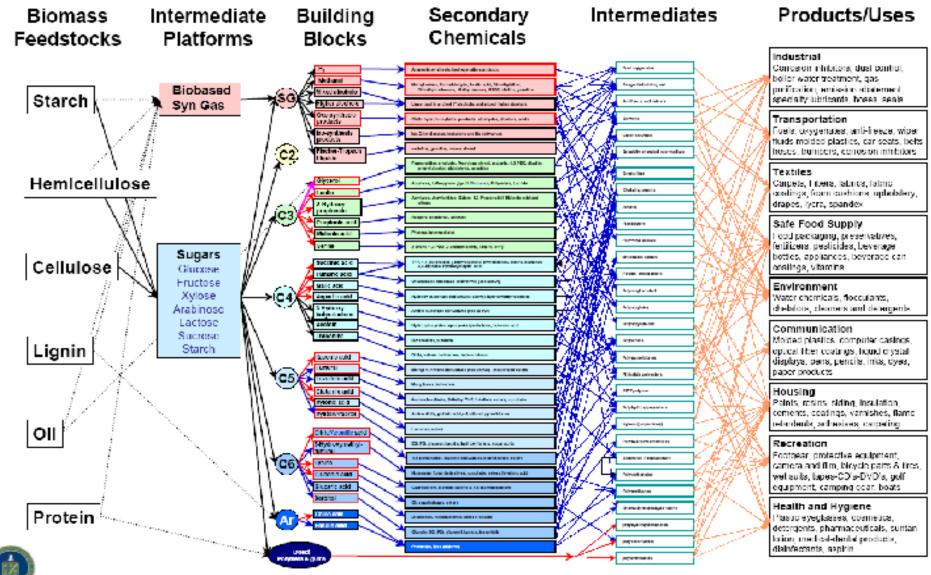
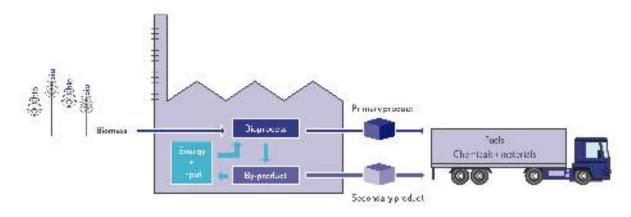



Figure 3 – Analogous Model of a Biobased Product Flow-chart for Biomass Feedstocks

Visionary Project: The integrated biorefinery

- The focus of the visionary project 'Integrated biorefinery' is:
 - providing access to industrial facilities for research and demonstration stage
 - reducing both lead time and investment for product development
 - using all fractions of biomass to produce the highest value possible in an eco-efficient way

Visionary Project: The integrated biorefinery

 Joint working group on biorefinery is being created with experts from 4 ETPs: SusChem, Plant for the Future, Forestry and Biofuels

- First experts' workshop on 7 June 2007 :
 - Develop a common strategy for the development of biorefineries in Europe
 - Improve access to funding for research & "proof of concept" to pilot scale facilities
 - Need for research infrastructures & demonstration plan

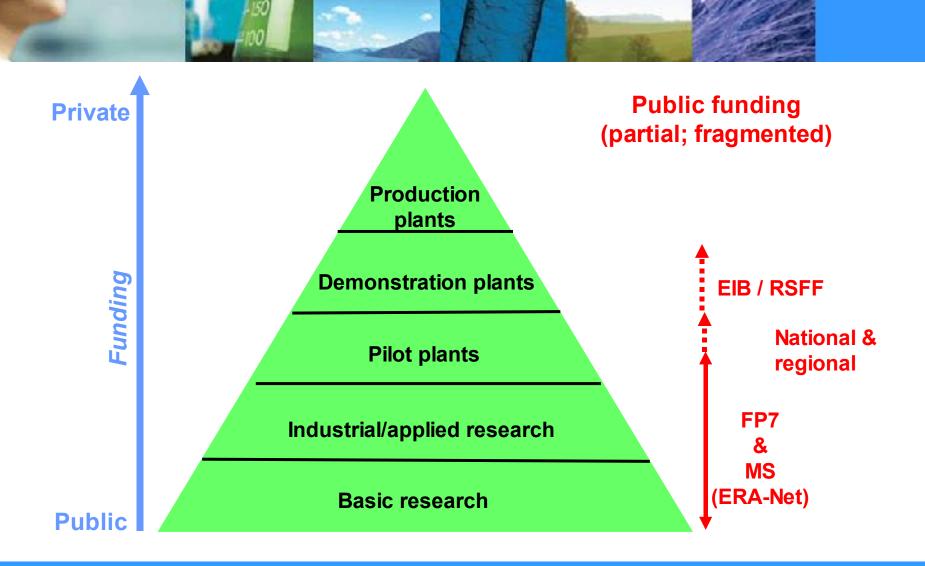
PHASE

Commercial production

Differentiate between pilot plants & demonstration plants

Piloting

Lab-scale R&D



- Dedicated plants, have to be built. Total costs >10 000 k€/project)
- Complete commercial (integrated) production process, but on a smaller scale. Dedicated plants using equipment identical to the real factory. Multi-process and/or multi-company.
- Owner: private (but often with public financial support)
- Output: Data for factory planning and final investment decision
- Aim: scaling up a specific process
- Multipurpose equipment that mimic industrial equipment. Mainly public (equipment can be "donated" by local companies). Multi-process facilities that can be rented. Owned by universities and R&D organizations
- Output: Functionality with industrially applicable equipment, proof-of-concept, scaling up, economic feasibility

Idea, concept or hypothesis

Public funding for biorefineries

Set up EU-wide demonstration project(s)

- → Integrated, diversified and zero-waste biorefinery
- Support the development of flexible research-oriented pilot plants
- Develop funding schemes in Europe for "multiple company consortia" to build small scale "first of a kind" plants

- Key EU technology challenges for the next 10 years to meet the 2020 targets:
 - Make second generation biofuels competitive alternatives to fossil fuels,
 while respecting the sustainability of their production
- Key EU technology challenges for the next 10 years to meet the 2050 vision:
 - Bring the next generation of renewable energy technologies to market competitiveness;

The SET plan

TECHNOLOGY AVENUE	DESCRIPTION	POTENTIAL ADDITIONAL IMPACT		ADDITIONAL IMPACT			UARRIERS	NEEDS
		1) Baseline securios 2) Potential penetration 3) Potential breakthroughs	Envirk CO ₂ avoided (Mt)	Mithyation cost	_	Competite- veness Additional cost of energy		
	1) Transport 2) 3.9 Mr of biofnels in 2005 3) 1st generation: Communityhext 2nd generation: pilot scale demonstrated	1) 2020-7-5% of transport petrol & diesel demand 2030: 9.5% of transport petrol & diesel demand 2) 2020: 10-14% of transport petrol & diesel demand 2030: 15-20% of transport petrol & diesel demand 3) 2nd generation large scale: demandshation by 2015	15+40 (2020) 45-75 (2030) 375+810 (2010-2030)	(en co ₀) 150+160 (2020) 90 (2030) 120+125 (2010-2030)	(Mose) 10+25 (2020) 20-40 (2030) 190+450 (2010-2030)	(%) 1.5+3.5 (2020) 2.0-3.5 (2030)	Biomass availability and sustainability (including allocation between energy sectors and competition with non-energy	Reminiscular d femoral public support for RAD to national and at feeds. Funding mechanisms for large scale demonstration unitatives. Dances restrait of mechalic regulations and policies at EU levels.

Example from the US

Feedstock

Fermentation Production

Separation

U.S. Department of Energy Energy Efficiency and Renewable Energy

The miracles of science

