

2X EFFICIENCY
SET4BioSET4BioStakeholder WSHenrik BågeJune 2022

for biopower @ 50% PHOENIX

BIOPOWEF

Imperial College London Consultants

Sustainable biomass availability in the EU, to 2050

Ref: RED II Annex IX A/B

Independent analysis provided by: Dr Calliope Panoutsou from the Centre for Environmental Policy, Imperial College London and Dr Kyriakos Maniatis.

AVAILABLE BIOMASS

- 5 200 TWh Biomass waste available in EU+UK*
- 50% usage for BioPower @ 50% = 1300 TWh
- + 2X Russian gas fired EU power @ 540 TWh!

Wood BioENERGY

CHEMISTRY

COMPOSITES

TEXTILE

PULP&PAPER

PLANNABLE Power and heat on-demand.

SCALABLE Cost-effective and highly efficient.

> **SUSTANIABLE** Consume half the biomass.

TREE PRODUCT AREAS

GAS TURBINE

THE BTC PLANT

HFB GASIFIER

INTRODUCING THE BTC PLANT (BIOMASS-FIRED TOP CYCLE)

- Doubled electrical efficiency from biomass (50-60 % vs. 25-34 %)
- Integrated pressurized gasification and gas turbine combustion (vs. boiler incineration and steam turbine)
- 100 % hydrogen capable
- Superior BECSS economics (waste heat not penalizing power cycle)
- Plannable and renewable power

Confidential & Proprietary Phoenix BioPower AB

BTC: A NEW POWER CYCLE

Hot water (energy carrier, low temp.)

HYBRID FLUIDIZED BED GASIFIER (HFB)

Novel fluidized bed gasification technology for high pressure gasification

Main features:

- Keep high reliability of fluidized bed technologies.
- Innovations to address challenges of BFB and CFB technologies at high pressures. Very wide operation load range (25% to 100%) and flexibility.
- Achieve a good fuel feedstock flexibility (e.g. particles sizes)

<u>Air-blown gasification</u>

- Application: gas turbine integration for power and heat production
- Feedstock: forest residues, demolition waste wood, agricultural waste
- Operating pressure: ~30-50 bar

Oxygen-blown gasification

- Application: hydrogen, gasoline, jet fuel, methanol, etc
- Feedstock: forest residues, demolition waste wood, collected and sorted urban waste (RDF), agricultural waste
- Operating pressure: ~20-25 bar

MARKET APPLICATIONS

LOCAL POWERGEN AND CHP

10 - 30 MWe units 43 - 50% 25-60 MW bio

Half the fuel costs 3 times more local power

Powergen Global CHP: Nth and East Europe

Municipal & large utilities, e.g. Tekniska verken, Vattenfall

> Forest, agricultural residues Hydrogen / natural gas

150 MWe units 45-50% with CCS 300 MW bio

Half the capture penalty and 30% lower costs

Large utilities, e.g. Drax, Uniper

Forest residues, imported pellets Hydrogen / natural gas

CO2-NEGATIVE POWER

Nth EU, Nth America

CO2-NEGATIVE H₂ **AND BIOFUELS**

25-300 MW bio

Decouple H2 from electricity prices CO2 negative

EU, Nth America, Japan

Chemical, Refinery, Steel industry, e.g. Perstorp, BASF, SSAB, ArcelorMittal

Forest residues, imported pellets

SCALING INFRASTRUCTURE

Atmospheric Systems

- Integrated combustor and gasifier
- TRL3
- 50 kW_f biomass and up to 200 kW_f hydrogen

IN COMMISSIONING

EPC: 2021-2022 Testing: 2022-2023

Cold-flow HFB Gasifier

- Hydrodynamics for high pressure gasifier
- 5 MW_f scale (no fuel) at RISE, Piteå

UNDER CONSTRUCTION

EPC: 2021-2022 Testing: 2022-2023

- rig at TU Berlin
- hydrogen

EPC: 2021-2022 Testing: 2023-2024

Pressurised Combustion

• Key validation rig for burner at pressure (TRL4)

• 1 MW_f 10 bar combustion

• Syngas, natural gas,

UNDER CONSTRUCTION

High pressure HFB Gasifier

- Key validation rig for gasification system (TRL5)
- 36 bar 500kW HFB gasifier
- O2 or air blown
- Combustion of real syngas up to 500 kW $_{\rm f}$

EPC: 2022-2024 Testing: 2025 onwards

BTC Pilot Plant

- Full system with gasifier and gas turbine
- 10 bar 2 MW_f 0.5 MW_e
- BTC pilot plant, TRL6/7
- Re-purposed gas turbine, not optimised

EPC: 2023-2025 Testing: 2025-2027

Risk-staged scale-up process

AGGRESSIVE DEVELOPMENT UNDERWAY

Accelerating: 7.5 M€ additional funds secured for next phase in R&D

PHOENIX ADVANCED COMBUSTION SYSTEM: FIRST FIRE!

- 2022-06-22: We had first fire of test rig at Stockholm facilities
- Linked gasifier hot commissioning begins this week
- Integrated operation after summer

13

7 direct

<section-header>Jircet influence3 montain
- A and a construction4 montain
- A and a construction

PHOEND) BIOPOWER

2x EFFICIENCY

Henrik Båge, CEO henrik.bage@phoenixbiopower.com www.phoenixbiopower.com Tel: 0046 (0)8 663 58 00

6 indirect

Indirect influence

PHOENIX ADVANCED COMBUSTION SYSTEM: FUEL FLEXIBLE COMBUSTOR

ONE COMBUSTOR

- One GT combustion system for multiple fuels
- Ultra-low NOx with natural gas and / or hydrogen
- Near-stoichiometric, high steam content
- Swirl stabilized and mild combustion

100% hydrogen

Much lower H2 flashback risk and very robust behavior with H2 for start-up

15

BTC ROADMAP – BTC BASE CASE

PHOENIX'S ROLE AND TECHNOLOGY

• Develop, design and supply

- biomass gasification system
- combustion system
- plant integration

 Catalyse the partnerships and developments needed to commercialise the Top Cycle technology

MICHAEL BARTLETT Co-Founder, CTO Ph. D. Gas Turbines GE, Vattenfall, Scania

STEFAN JAKÉLIUS Chairman

Sw Energy Agency Industrifonden

HENRIK BÅGE Co-Founder, CEO Entrepreneur 15 years in cleantech

CATHARINA LAGERSTAM Board member S.E.C Lux.

ICA Bank

HANS-ERIK HANSSON Co-Founder Entrepreneur Innovator, ABB/Alstom

OLA JOHANSSON Board member Siemens Turbo Machinery Epishine

BIRGITTA RESVIK

Board member Fortum Svenskt Näringsliv

Russian gas to EU: 1 300 TWh/y (45% of all EU gas)

X

EU power w Russian gas ~550 TWh/y (almost 4x Sweden)

Sustainable?!?

Increased capacity shortage

Increased investments in grid infrastructure and storage

PERFORMANCE TARGETS

	P25	P150
Feedstock	Forest residues, agri. residues, blends. Gaseous fuels (H2, NG)	
Thermal input (MW _{th})	50	300
Net power output* (MW _e)	25	165
Net electrical efficiency*	50%	55%
with CO2 capture	45%	50%
Total efficiency	90-110%	90-110%

*LHV, forest residues 50%MC

----- LEVELIZED PRODUCTION COSTS

	Powel	
C	t and	
POW	Неа	

Steam BioPowe

100 MWe commercial plant

THE BTC CONCEPT

TOP CYCLE: a platform technology

Advantage vs Combined Cycle

- Superior hydrogen combustion
- Ultra-low Nox
- +10-15 % pts electrical efficiency
- +15% pts total efficiency in district heat

- 30-40 % lower capital costs & footprint. •
- +15% pt total efficiency in district heat •
- One third the cost of CO₂ avoided
- 70% lower power penalty

0	Λ
Ζ	4

G

Generator

TOP CYCLE: NEW POWER CYCLE Α

- High pressure gas turbine •
- Massive steam injection
- Minimised air compression
- Water recovered in flue gas condenser

 \rightarrow High power output and efficiency \rightarrow High heat output

BTC: A NEW PROCESS FOR BIOPOWER

BTC: Biomass-fired Top Cycle

- High pressure, steam-injected gas turbine, stoichiometric combustion
- Pressurised gasification of biomass
- Hot gas clean-up of product gas
- Steam as working fluid and heat carrier
- Water recovered in flue gas condenser