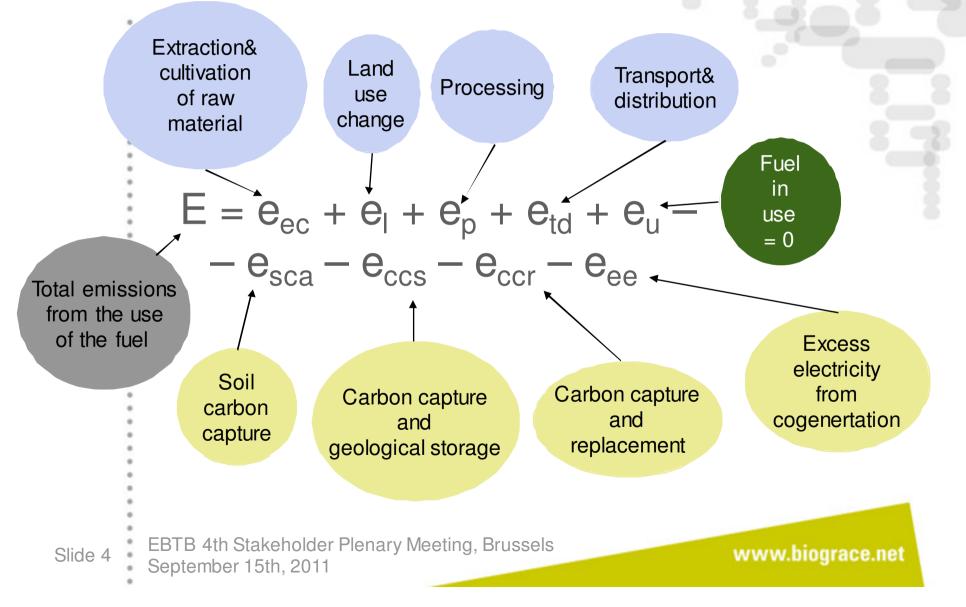


BIOGRACE – harmonisation of GHG methodologies

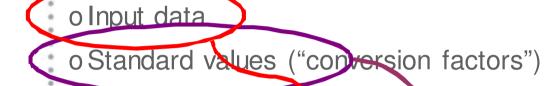
Dina Bacovsky BIOENERGY 2020+ European Biofuels Technology Platform, 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011 BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

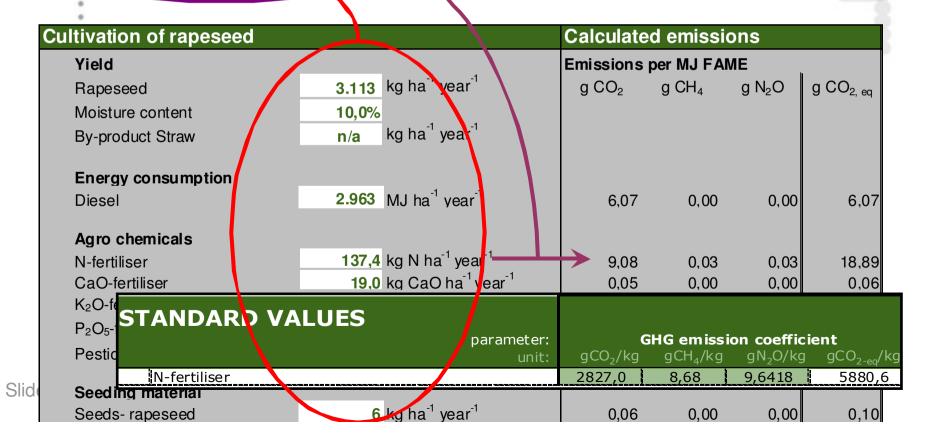
Renewable Energy Directive (RED)


- Sustainability criteria for biofuels
- Minimum GHG emission savings (Art. 17.2)
 - 35%
 - for installations that were in operation on 23 January 2008: binding from 1 April 2013
 - 2017 50%
 - 2018 60% for new installations
- Economic operators may use (Art. 19.1)
 - default values
 - actual values calculated according to Annex V.C
 - sum of actual value and disaggregated default value
- Independent auditors must check information (Art. 18.3)

Slide 2 EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe **Biofuel production pathway** Default greenhouse gas emission saving - Ethanol from wheat (lignite CHP) 16% - Ethanol from wheat (process fue) 16% Ethanol from wheat - Ethanol from wheat (natural) (natural gas as process fuel - Ethanol from wheat (natur in CHP plant) – Ethanol from wheat (straw Default value: 47% - Ethanol from corn 52% – Ethanol from sugar beet – Ethanol from sugarcane 71% **RED Annex V.a** - FAME from rape seed 38% – FAME from palm oil 19% - FAME from palm oil (methane capture) 56% – FAME from soy 31% - FAME from sunflowe 51% - FAME from used 83% Rape seed biodiesel - PVO from rape 57% Default value: 38% - HVO from rape 47% - HVO from palm oil 26% - HVO from palm oil (metha 65% - HVO from sunflower 62% - Biogas from dry manure 82% – Biogas from wet manure 81% – Biogas from MSW 73% EBTB 4th Stakeh Slide 3 www.uiuyrace.net September 15th, 2011


Harmonised Calculations of Harmonised Calculations of Bifuel Greenhouse Gas Emissions in Europe Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas Emissions (Calculations) Bifuel Greenhouse Cas Emissions) Bifuel Greenhouse Cas


BIOGRACE

Why harmonisation of biofuel GHG calculations?

Why harmonisation of biofuel GHG calculations?

EXAMPLE: Different results from same biofuel ("cherry picking" of the most beneficial standard values)

•	Parameter	Unit	Source			
			<u>EC (RED</u>	Netherlands	<u>UK</u>	<u>Germany</u>
			<u>Annex V)</u>	<u>(Ecofys / CE)</u>	<u>RFA</u>	<u>IFEU</u>
	Nitrogen Fertilizer	g CO _{2eq} /kg	5917,2	6367,0	6800,0	6410
:	P fertilizer	g CO _{2eq} /kg	1013,5	700,0	354 for TSP, 95 for rock phosphate, 596 for MAP	1180
:	K fertilizer	g CO _{2eq} /kg	579,2	453,0	333,0	663
	CaO fertilizer (85%CaCO3+15%CaO,Ca(OH)2)	g CO _{2eq} /kg	130,0	179,0	124,0	297
:	Pesticides	g CO _{2eq} /kg	11025,7	17256,8	17300,0	1240
۰	Discol (direct plus indirect omissions)	q CO₂eα/MJ	87.6	76,7	86.4	89,1
	Diesel (direct plus indirect emissions) Natural gas (direct plus indirect emissions)	g CO _{2eq} /MJ g CO _{2eq} /MJ	68,0	53,9	62,0	62,8
:	Methanol (direct plus indirect emissions)	g CO _{2eq} /MJ	98,1	137,5	138,5	<u>62,5</u>

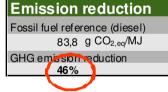
EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

www.biograce.net

Slide 6

Why harmonisation of biofuel GHG calculations?

- EXAMPLE: Different results from same biofuel
 - (same input values but different standard values)


Production of FAME from Rapeseed

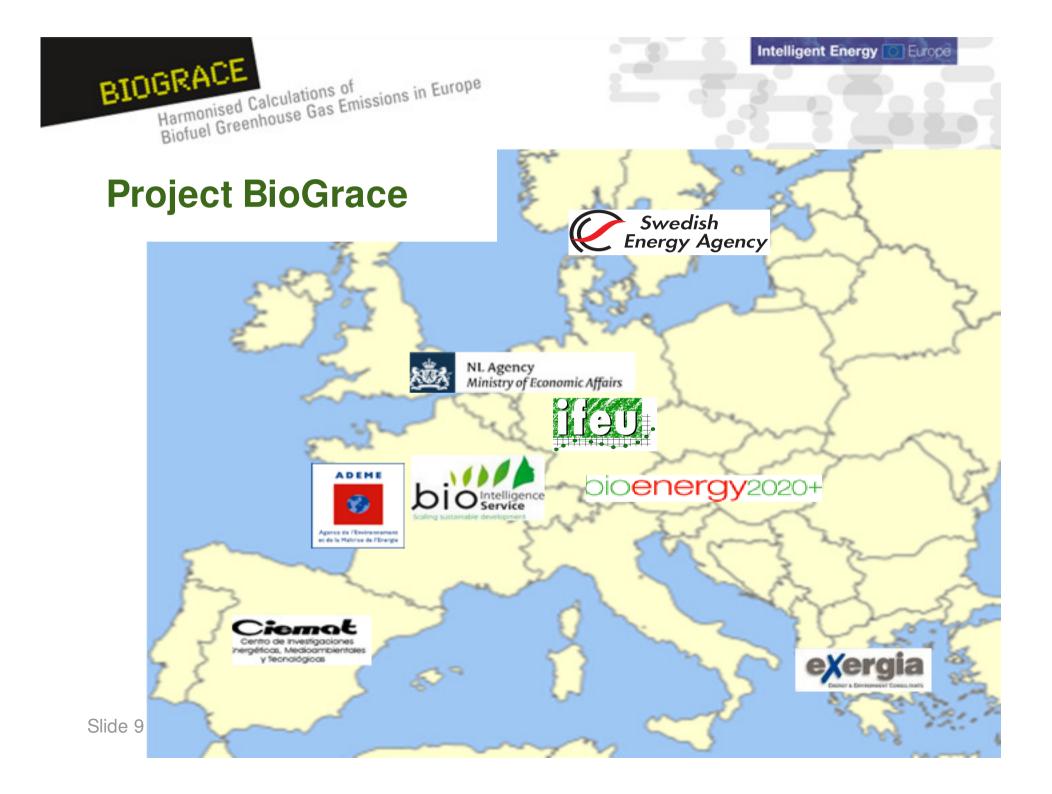
Production of FAME from Rapeseed

Emission reduction Fossil fuel reference (diesel) 83,8 g CO_{2,eq}/MJ GHG emission reduction 38%

Overview Results

All results in g CO _{2,eq} / MJ _{FAME}	Total	Default values RED Annex V.D	Emission red Fossil fuel referenc
Cultivation e _{ec}	27,7	29	83,8 g C
Cultivation of rapeseed Rapeseed drying	27,29 0,42	28,51 0,42	GHG emission redu 46%
Processing e _p	16,5	22	
Extraction of oil Refining of vegetable oil Esterification	3,29 0,85 12,39	3,82 17,88	
Transport e _{td}	1,3	1	
Transport of rapeseed Transport of FAME Filling station	0,15 0,73 0,44	0,17 0,82 0,44	
Land use change e _l	0,0	0	
e _{sca} + e _{ccr} + e _{ccs}	0,0	0	
Totals	45,6	52	

EBTB 4th Stakeholder Plenary Meeting, Brussels Slide 7 September 15th, 2011



Project BioGrace

- BIOfuel GReenhouse gas emissions: Alignment of Calculations in Europe
- Key objectives are
 - Cause transparency 1.
 - Cause harmonisation 2.
 - 3. Facilitate stakeholders
- **Products**
 - One list of standard values 1
 - Excel GHG calculation tool 2.
- voluntary certification scheme

- Calculation rules 3.
 - Harmonised national GHG calculators 4.

EBTB 4th Stakeholder Plenary Meeting, Brussels Slide 8 September 15th, 2011

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe One list of standard values

2

Condensed list of standard values, version 3 - Public

This file gives the standard values as published on www.biograce.net in Word format. Two Word versions of this list exist:

1. A complete list of standard values, containing all the values as listed in the Excel version

2. A condensed list showing the most important standard values

This file contains the condensed list.

Abbreviations and definitions used can be found in the Excel file on the web page http://www.biograce.net/content/ghgcalculationtools/standardvalues.

Global Warming potentials 1

CO ₂	1	g CO _{2,eq} / g CO ₂
CH ₄	23	$g CO_{2,eq} / g CH_4$
N2O	296	g CO₂,eq / g N₂O

GHG emission coefficients

 N-fertiliser	5880,6	g CO _{2.m} /kg N
 P ₂ O ₅ -fertiliser	1010,7	g CO _{2.ea} /kg P ₂ O ₅
 K ₂ O-fertiliser	576,1	g CO _{2,eq} /kg K ₂ O
CaO-fertiliser	129,5	g CO _{2,eq} /kg CaO
K ₂ O-fertiliser CaO-fertiliser	,	- /// -

L)		700 44.0	
		780 44,0	
hyproducts - solids	Both Excel and Word versions		┉┉┧┉┉┉┉┿┈┉
	Land Versions	26,5	
		9,2	
	Deth Excel and the		
	BOULTAGE	26,4	
	Both Excertailable at	23.5	╺╼╼┧╼╼╍╼┿╼╼
	availusie	19,6	i
d		26,4	
	available en www.BioGrace.net	37 1	
Juct FAM F. from waste_oil)		21,8	
hle_ail		<u>36,0</u>	
		16.0	
neal		17.0	

Version 3 - Public

BIOGRACE

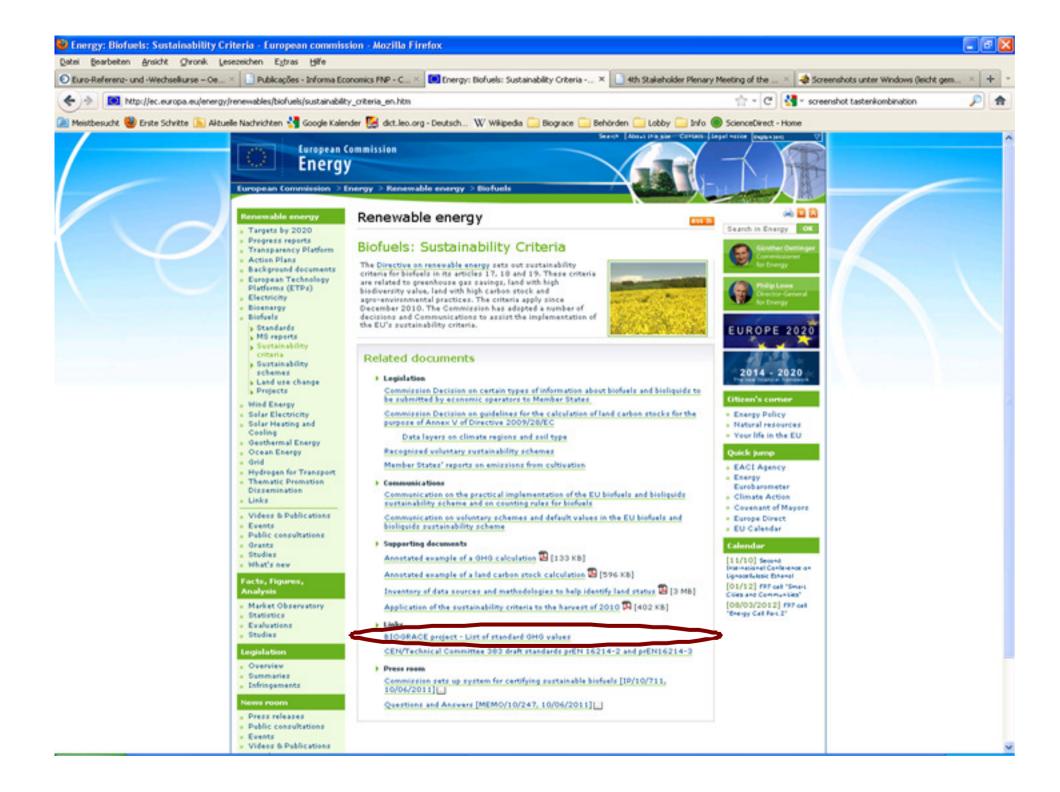
SI	CANDARD VALUES		
	unit:	gCO2/kg	gC
	l		
GIO	bal Warming Potentials (GWP's)		
	CH4		
	N₂O		
	J o inpu ts		
Agr	o inpu is IN fortilicar	2827,0	8
	N-fertilise : P ₂ Q ₂ -fertilise	964,9	<u>°</u> 1
			<u>-</u>
-	K ₂ O-fertiliser	<u>536,3</u> 119,1	
	CaO-fertiliser Pesticides	9886,5	25
	Seeds- corn	9000,5	23
· · · · · · · · · · · · · · · · · · ·	Seeds- raneseed	412.1	0
	Seeds- soy hean		
	Seeds- su garbeet	2187.7	4
	Seeds- su garcane.	1.6	0
	Seeds-sunflower	412.1	0
	Seeds-wheat	151.1	0
	EEB compost (.pal.m.oil.)	0.0	
	I		
Fue	ls- gæsses		_
	Natural gas (4000 km, Russian NG quality)		
	Natural gas (4000 km, EU Mix quality)		
Fue	ls- liauids		
	Diesel		
	Gasoline		
	HEO		
	Ethanol		
	Methan d		
	FAME		
	Syn diesel (BtL)		
	I HV O		
Fue	ls / feedstock / byproducts - solids		
	Hard .co.al		
	Ligoite		
	<u>Corn</u>	-	
	EB	- 5	۲C
	Rapeseed	- C	יר
	Sovbeans Sugar beet	-	
	Sugar cane		
	Sunflowerseed		
	Wheat		
	Animal fat		
	BioQil (.byproduct FAM E from waste oil)		
0 =	Crude vegetable oil		
<u> </u>	DDGS		
	Gynerol		
	Palm kernel meal		L

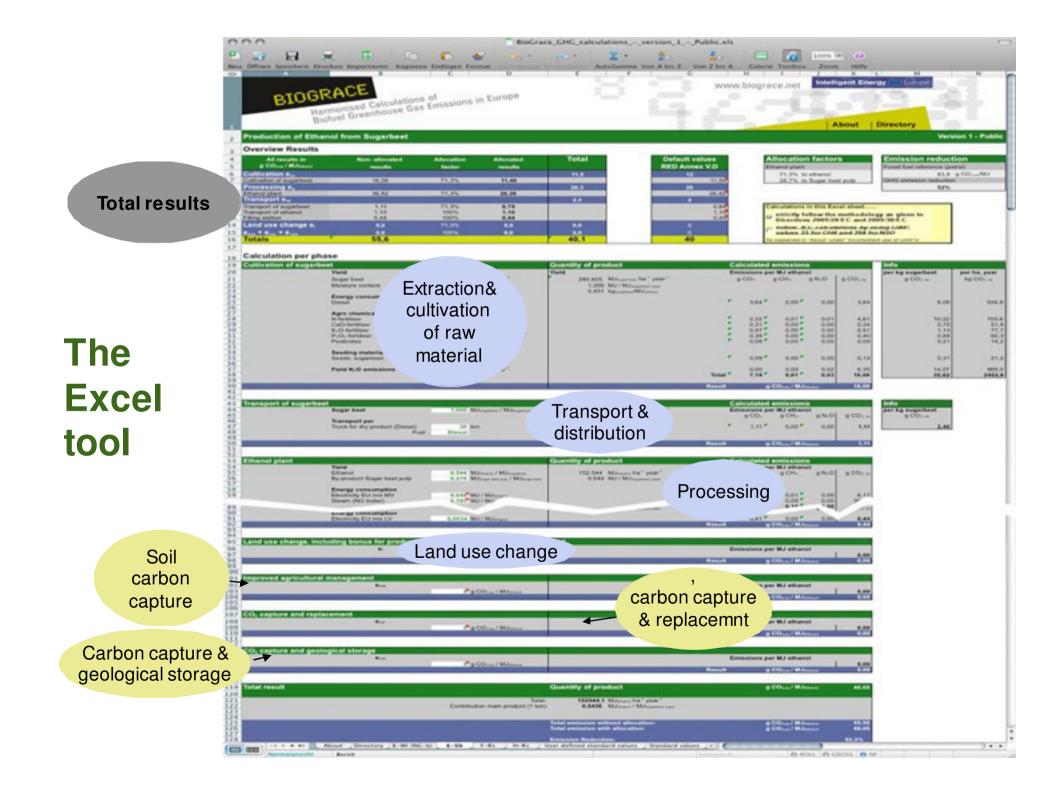
One list of standard values

List of standard values

- o is publicly available
- to be used by everyone that makes GHG calculations under RED based legislation
 - We are achieving this by:
 - Including values in all software tools
 - Causing that list is known by all GHG calculation experts
 - Showing that these (and only these) standard values lead to RED defaults
 - Requesting policy makers to make reference from national legislation (implementing RED / FQD)

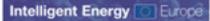
EBTB 4th Stakeholder Plenary Meeting, Brussels
 September 15th, 2011


www.biograce.net


Slide 11

One list of standard values

- European Commission put a link to the list
- Member States include list in Technical Guidance:
 - Denmark, Netherlands, UK have done so
 - Austria, Germany, Ireland, Portugal, Slovakia, Spain are planning to do so
- Example (from UK consultation on C&S Technical Guidance)
 - The RFA therefore proposes the following approach to which standard values should be used:
 - 1. For the reporting period 2011/2012, the RFA proposes to align its current standard emission factors with the ones proposed by the BioGrace project.



The complete Excel tool

- Version 4
- One separate worksheet for each of the 22 biofuel pathways
- Standard values worksheet
- Separate worksheet for user defined standard values
- Extra worksheets for calculation of
 - direct land use change (based on Commission Decision)
 - carbon stock accumulation thanks to improved agricultural management (based on Commission Decision)
 - N₂O emissions (based on IPCC Tier 1)
- List of additional standard values
- User manual
- Calculations rules

Slide 15 EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

"Future" Biofuels

B. Estimated typical and default values for future biofuels that were not on the market or were on the market only in negligible quantities in January 2008, if produced with no net carbon emissions from land-use change

Biofuel production pathway	Typical greenhouse gas emission saving	Default greenhouse gas emission saving		
wheat straw ethanol	87 %	85 %		
waste wood ethanol	80 %	74 %		
farmed wood ethanol	76 %	70 %		
waste wood Fischer-Tropsch diesel	95 %	95 %		
farmed wood Fischer-Tropsch diesel	93 %	93 %		
waste wood dimethylether (DME)	95 %	95 %		
farmed wood DME	92 %	92 %		
waste wood methanol	94 %	94 %		
farmed wood methanol	91 %	91 %		
the part from renewable sources of methyl-tertio-butyl-ether (MTBE)	Equal to that of the methanol production pathw			

www.biograce.net

Slide 16

BioGrace as a voluntary scheme

- EC approves voluntary certification schemes (RED Art. 18.4)
- BioGrace has submitted GHG tool to EC for recognition as a voluntary scheme in May 201; number 21 in the queue
- EC approved 7 schemes in July, 2011
 - ISCC: refers to BioGrace standard values
 - RTRS, 2BSvs allow for external GHG calculators
 - RSB: prescribes to use ecoinvent database
 - Bonsucro, Greenergy: do not require actual GHG values
 - RSBA's GHG methodology is not publicly available
- GHG tool can be used as "add-on" to existing schemes
- To our knowledge no other GHG tools have been send to Commission for recognition

Slide 17

Thank you for your attention

INTELLIGENT ENERGY EUROPE

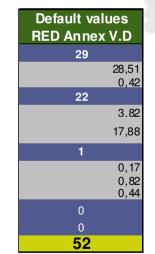
The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. The European Commission is not responsible for any use that may be made of the information contained therein.

Dina Bacovsky dina.bacovsky@bioenergy2020.eu info@biograce.net

EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

www.biograce.net

Slide 18


The aggregation box on top

from cultivation to filling station

Production of FAME from Rapeseed (steam from natural gas boiler)

Overview Results

All results in g CO 2,eq / MJ FA ME	Non-allocated results	Allocation factor	Allocated results	Total
Cultivation e _{ec}				28,9
Cultivation of rapeseed Rapeseed drying	48,63 0,72	58,6% 58,6%	28,49 0,42	
Processing e _p				21,7
Extraction of oil Refining of vegetable oil Esterification	6.53 1,06 17,61	58.6% 95,7% 95,7%	3,83 1,02 16,84	
Transport e _{td}				1,4
Transport of rapeseed Transport of FAME Filling station	0,30 0,82 0,44	58,6% 100% 100%	0,17 0,82 0,44	
Land use change e	0,0	58,6%	0,0	0,0
esca + eccr + eccs	0,0	100%	0,0	0,0
Totals	76,1			52,0

EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

www.biograce.net

Slide 19

.

RED Annex V.a

Biofuel production pathway	Terrical greenhouse gas emission saving	Default greenhouse gas emission saving
– Ethanol from wheat (lignite CHP)		16%
– Ethanol from wheat (process fuel not specifie	thanol from sugar beet	16%
	Typical savings: 61%	34%
- Ethanol from wheat (natural gas CHP)	Default value: 52%	47%
– Ethanol from wheat (straw CHP)	Deladit value. 5278	69%
– Ethanol from corn	0%	49%
– Ethanol from sugar beet	612	52%
– Ethanol from sugarcane		71%
- FAME from rape seed	Rape seed biodies	sel 38%
– FAME from palm oil	Typical savings: 4	5% 19%
- FAME from palm oil (methane capture)	Default value: 38	% 56%
– FAME from soy		31%
– FAME from sunflower	58%	51%
- FAME from used cooking oil	88%	83%
- PVO from rape seed	45%	57%
- HVO from rape seed	51%	47%
– HVO from palm oil	40%	26%
- HVO from palm oil (methane capture)	68%	65%
- HVO from sunflower	65%	62%
– Biogas from dry manure	86%	82%
– Biogas from wet manure	84%	81%
– Biogas from MSW	80%	73%

Land Use Change

General principles :

1. Annex V of the RED gives the general calculation guidelines (part C, point 7):

 $e_1 = (CS_R - CS_A) \times 3,664 \times 1/20 \times 1/P - e_B (1)$

2. Calculation rules are explained in the following the decision 2010/335/EU: *Commission Decision of 10 June 2010 on guidelines* for the <u>calculation of land use carbon stocks</u> for the purpose of Annex *V of Directive 2009/28/EC.*

This communication gives:

- Consistent representation of land carbon stocks
- Calculation rules
- Default data for applying this formula (tables)

Slide 21 EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

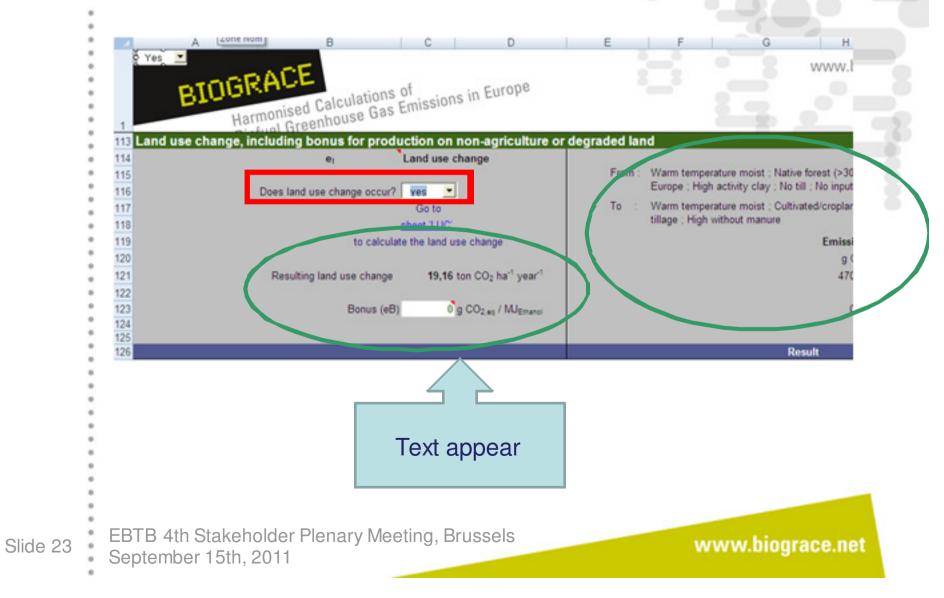
Land Use Change

General principles :

Two types of calculation are possible :

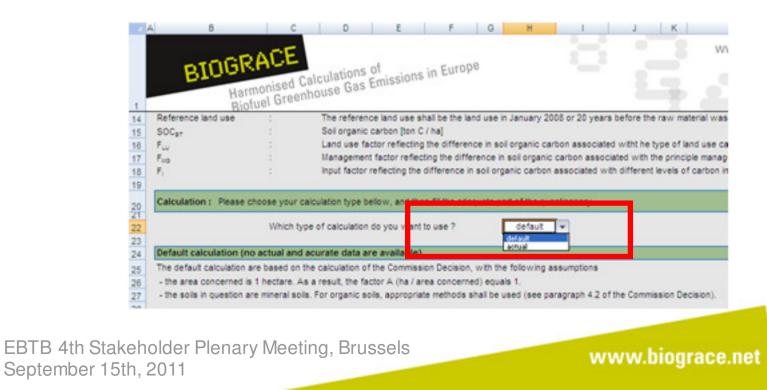
1. Calculation using default value

2. Calculation using actual value for C_{VEG} and Soil Organic Carbon (SOC).


$$CS_i = C_{VEG} + SOC_i$$

Slide 22 EBTB 4th Stakeholder Plenary Meeting, Brussels September 15th, 2011

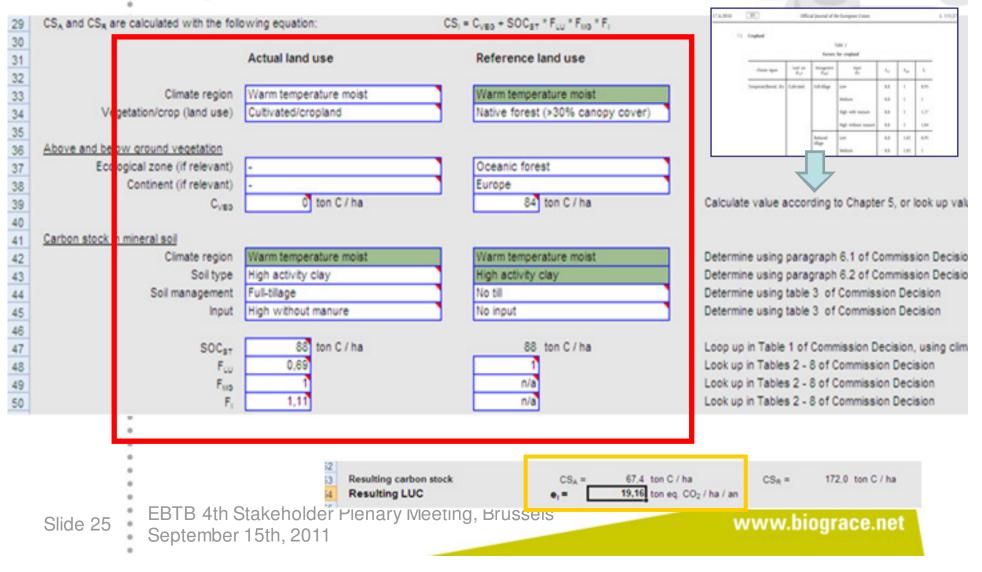
Step 1 : declare LUC in your pathway



Step 2 : Go to the LUC excel sheet and read through this sheet. Get the Commission Decision 2010/335/EU with you.

Intelligent Energy

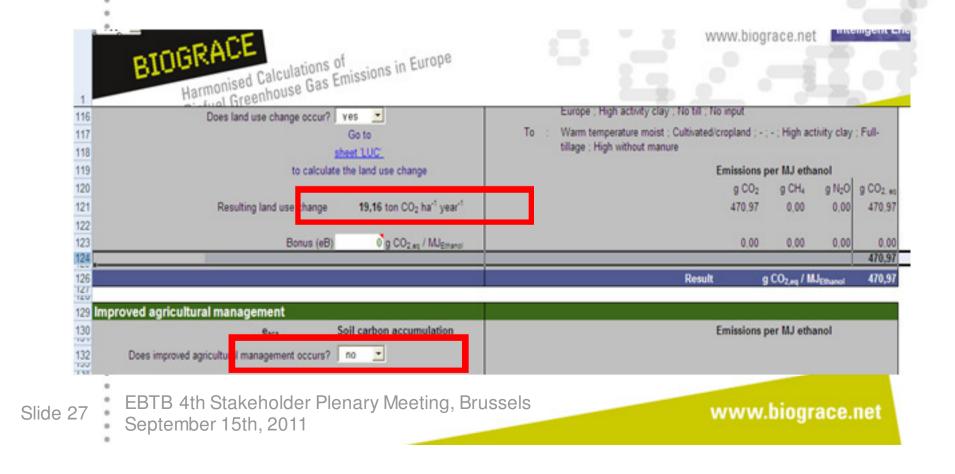
Europ


Step 3 : Choose the type of calculation : default or actual and fill the appropriate white cells.

Slide 24

Step 4 (default calculation) : use EC decision to fill out data

Step 4 (actual calculation) : mind filling detailed information on the sources of the SOC data used.


	BIOGRACE Harmonised Calc	ulations of	£						
	Light Calci		1. 1.000	in Europe					
	11	Gas Er	nissions	the -					
	Harmonised Calo Biofuel Gree mus	1.5 0						_	- 2
0	Type of data use			measureme	ents			nessurand	1000
	More detail information	Field measure	ment from a			plots, carried	out by the		Ex
145 4 6 7 8 9 0 1 2 3				National Instit	tute				-
3									
4									
6	If using data from other methods than me	easurements	÷						
7	Please confirm that they take into account :								
8	climate		yes						
9	soilype		yes						
0	land over		yes						
1	land management and in uts.		yes						
2									
3	Resulting carbon stock in soils	SOCA =	70.2	ton C / ha		SOCR =	102.0	ton C / ha	
4	Resulting carbon stock in vegetation	C.eg.A=	0,0	ton C / ha		Cup.R=	80.0	ton C / ha	
		CSA =	70,2	ton C / ha		CSR =	182,0	ton C / ha	
4 5 6	Resulting land Use Change	e, -		ton CO2 har1					

Step 5 : Check in the biofuel pathway that the LUC value is there. Please, also check that no Improved agricultural management is declared.

Intelligent Energy

Europe

e_b bonus for degraded and contaminated lands :

- A specific line exits within the LUC module of each pathway.
- Explanations on how to use are to be taken from the RED

Land use chan	ge, including bonus for produ	ction on non-agriculture or degra	ded land	Én ré			
<u>E</u>	e, L	and use change					
7	Does land use change occur?	•					
		223		_			
				Emissions			
	Describes load use shares	a called CO. hell word		g CO:	g CH,		9 CO2 40
4	Resulting land use change	0,00 ton CO ₂ ha" year"		0,00	0,00	0,00	0,00
Improved agric	cultural management e _{sce} S	(b) fails into one of the following (i) severely degraded land, in (ii) heavily contaminated land. The bonus of 29 gCO _{2ev} /MJ sha	cluding such land that was formerly in ag I apply for a period of up to 10 years fro ease in carbon stocks as well as a sizal	pricultural use; m the date of c ble reduction in	conversion		
Slide 28	EBTB 4th Stakehold September 15th, 20	er Plenary Meeting, Bruss 1	sels	www.	biogr	ace.n	et

Improved Agricultural Management

- Annex V of the RED has a specific term for carbon stock accumulation thanks to improved practices, but does not give much more explanations on how to calculate it
- 2. Calculation rules from the Commission Decision can serve as guidelines for making first level calculations
- 3. As for LUC, actual data can be used to assess them
- 4. In the BioGrace tool, an e_{sca} sheet exist to carry out the calculation
- 5. This sheet is build on the same frame than the LUC sheet
- 6. Don't declare e_{sca} when LUC are already declared (double counting)

New item in Public version 5

Calculation of N₂O field emissions

- 1. A major contributors to GHG emissions of most of the pathways
- Default value : N₂O emissions calculated from a model (DNDC, average EU), except some pathways (IPCC Tier 1 for soybeans, palm trees, sugarcane)
- 3. For new pathways or when modifying the cultivation data from an existing pathways : BioGrace recommends to use IPCC Tier 1 estimation for this emission
- 4. BioGrace tool aims to provide an Excel sheet for making N_2O calculations