Challenges in financing of new sustainable biofuels technology projects

Michael Persson, General Manager of Regulatory Affairs
DONG Energy, Power New Bio Solutions

European Biofuels Technology Platform
4th Stakeholder Plenary Meeting
Brussels, 14 September 2011
Agenda

• DONG Energy / Inbicon straw-based bioethanol
• From laboratory to demonstration
• Funding history
• Challenges for commercialisation
• Proposals for incentivising commercialisation
• Conclusion and recommendation
DONG Energy / Inbicon Bio-refinery

The Inbicon process
- Cellulosic biomass (agricultural residues)

Inbicon
- Ethanol
- C5 molasses
- Lignin biofuel

Demonstration plant in Kalundborg

- **Input:**
 - 30,000 t wheat straw
 - € 64 mill., incl. € 10 mill. support from DK government

- **Output:**
 - 5.4 mio. l ethanol
 - 13,100 t lignin pellets
 - 11,250 t C5-molasses

- **Investment:**
 - € 9.1 mill. support from EU 7th FP

2G ethanol on the market
- October 2010 Statoil introduced 2G E5 on 98 petrol stations in Denmark

In operation since November 2009
Straw Ethanol – Inbicon Demo-Plant Results

Technology
- High ethanol yield
- Continuous operating process
- High dry solids
- Enzymatic liquid fraction
- Integrated contamination control
- Water & energy consumption: 2011

Overall Concept
- Ethanol according to EN standard: Proven
- Lignin pellets in high quality: Proven
- Molasses for biogas: Proven
- Molasses for feed: 2011

Capacity and Availability
- The capacity is tested and proven in key areas
- Availability is calculated and tested by sections

Scope of demo plant
- The demo plant is a complete Inbicon Biomass Refinery, showing all steps in sequence
- The demo plant produces 3 end-products
- The demo plant purpose is to show continuous operation, fully automated and with limited staff (3)
DONG Energy / Inbicon Bio-refinery
Technology ready for commercial deployment

Commercialisation Phase
1st of kind commercial
• 98 million liter bioethanol
• + lignin solid biofuel
• + C5 molasses
• Possible sites identified in Denmark
• Feedstock collection in place
• €320M investment
• Debt, equity + possibly grant funding
• Solid market incentives required
• Potential for many plants across the EU by 2020
Investment and operating cost increase dramatically with scale

Initial technology project: "Co-production biofuels", budget €13.5m, EU FP5 support: €6.5m

Demonstration plant: Investment €64m, DK gov't support €10m
Demonstration support: EU FP7 € 9m

1st. commercial plant: Investment €320m, Operation: Regulatory incentives required

Demonstration plant: Investment €64m, DK gov't support €10m
Commercial scale plants are needed to get down the experience curve

The curve assumes plants being built!

Source: ePURE working group on cellulosic ethanol
Barriers and needs from the perspective of a cellulosic ethanol producer

Barriers - Risks:
- Uncertain policy environment: RED implementation, targets, FQD
- Unclear incentives / policy signals to invest big scale in advanced biofuels
- Results in no or unclear premium for cellulosic biofuels to value superior sustainability

Needs:
- Specific mandatory target for advanced/cellulosic ethanol
- Production support, fixed premium for first 1 billion liters per plant (wind mill model)
- Other support measures (e.g. grants, loan guarantees) for production plants
- Incentives for creation of value chain also for by-products and collection of residues

Reluctance to invest in cellulosic biofuels
No capacity build up

Source: EBTP Financing Workshop, June 2011
Willingness to pay for sustainable renewable energy – but not within fuels

- Renewable energy usually cannot stand alone without subsidies
- Financial stability is needed to ensure build-up of capacity
- Windpower enjoy support resulting in prices 2X to 3X the price of the fossil alternatives, such as coal-based power
- Biomass power and heat also enjoy incentives resulting in prices considerably above the price of the fossil alternative
- Why are cellulosic biofuels expected to be able to compete with mature, optimised first-generation bioethanol?

PROPOSAL:
Support of XX €cent per liter for the first 1 billion liter per individual plant
Conclusion

- R&D funding programmes are very useful for R&D activities
- Deployment and commercialisation need support of another magnitude, i.e. solid regulatory incentives
- New, sustainable technologies are rarely competitive with the fossil technologies they replace, for example windpower, biopower etc.
- Financing of sustainable biofuels projects is a challenge, but not impossible. Financing can deal with technological risk and market risk
- Financing can not deal with an economically unsustainable business case
- There is a need for strong regulatory incentives, that can be put into the investment calculation

MIPER@dongenergy.dk
www.dongenergy.com
www.inbicon.com
Thank You

MIPER@dongenergy.dk

www.dongenergy.com
www.inbicon.com
Success story in EU funding of projects

10 X multiplication effect of original EU investment:

- **Initial technology project:** "Co-production biofuels", budget €13.5m, EU contribution (FP5): €6.5m
- **Demonstration plant:** Budget €40m, Danish gov't support €10m
- **Total project expenditure till end of 2009:** +/- €65m

New projects based on the initial project:

- **HYPE**
 - Develop consolidated and more cost-effective bioprocessing, budget €5.4m, EU contribution €3.6m

- **Renescience**
 - Pre-treatment of waste with enzymes for introduction in pressurised gasifiers, budget €7.3 million, contribution from Danish sources approx. €3.8m

- **2nd generation biofuel for cars of the future**
 - Comparison of pretreatment technologies, budget €5.6m, DK gov't contribution approx. €2.8m

- **Biomass for biofuel and bioethanol on pilot scale**
 - Optimisation, budget €1m, contribution from Danish sources approx. €0.8m

- **Kacelle**
 - Demonstration and optimisation of the Kalundborg demonstration plant
 - FP7 contribution: €9 m